Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene
نویسندگان
چکیده
Root-knot nematodes ( Meloidogyne spp.) are among the main pathogens of tomato ( Lycopersicon esculentum ) worldwide. Plant resistance is currently the method of choice for controlling these pests and all the commercially available resistant cultivars carry the dominant Mi gene, which confers resistance to the three main species Meloidogyne arenaria , M. incognita and M. javanica . However the emergence of virulent biotypes able to overcome the tomato resistance gene may constitute a severe limitation to such a control strategy. To date, little was known of the possible influence of the homozygous vs heterozygous allelic state of the Mi locus, or the tomato genetic background, on the expression of the resistance. In order to test both these factors, the resistance was evaluated of a large panel of L. esculentum genotypes (selected from the Vilmorin germplasm stock collection) to seven M. incognita lines avirulent or virulent against the Mi gene. Plant resistance was estimated by counting the egg masses on the root systems after inoculation with second-stage juveniles ( J 2 ). Reproduction of the nematodes was similar or, more often, significantly higher on heterozygous tomato genotypes than on homozygous ones, suggesting a possible dosage effect of the Mi gene. Data also indicated that the tomato genetic background had a major effect on the variations observed in nematode reproduction, especially when tomato genotypes were heterozygous for the Mi gene. These results have important consequences in terms of breeding strategies and durability of the resistance conferred by the Mi gene.
منابع مشابه
Susceptibility Assessments of Tomato Genotypes to Root Knot Nematodes, Meloidogyne javanica
Root-knot nematodes, Meloidogyne spp., are one of the important plant parasitic nematodes of tomato in the world. The most suitable control method of plant parasitic nematodes is the use of resistance sources and tolerant cultivars. In the earlier studies, the results showed thatonly 2% (19 out of 537 varieties) were resistant and tolerant to the root knot nematodes. In the supplementary studie...
متن کاملEffects of the Mi-1, N and Tabasco Genes on Infection and Reproduction of Meloidogyne mayaguensis on Tomato and Pepper Genotypes.
Meloidogyne mayaguensis is a damaging root-knot nematode able to reproduce on root-knot nematode-resistant tomato and other economically important crops. In a growth chamber experiment conducted at 22 and 33 degrees C, isolate 1 of M. mayaguensis reproduced at both temperatures on the Mi-1-carrying tomato lines BHN 543 and BHN 585, whereas M. incognita race 4 failed to reproduce at 22 degrees C...
متن کاملMi-1-Mediated Nematode Resistance in Tomatoes is Broken by Short-Term Heat Stress but Recovers Over Time.
Tomato (Solanum lycopersicum L.) is among the most valuable agricultural products, but Meloidogyne spp. (root-knot nematode) infestations result in serious crop losses. In tomato, resistance to root-knot nematodes is controlled by the gene Mi-1, but heat stress interferes with Mi-1-associated resistance. Inconsistent results in published field and greenhouse experiments led us to test the effec...
متن کاملMi-1-Mediated Resistance to Meloidogyne incognita in Tomato May Not Rely on Ethylene but Hormone Perception through ETR3 Participates in Limiting Nematode Infection in a Susceptible Host
Root-knot nematodes, Meloidogyne spp., are important pests of tomato (Solanum lycopersicum) and resistance to the three most prevalent species of this genus, including Meloidogyne incognita, is mediated by the Mi-1 gene. Mi-1 encodes a nucleotide binding (NB) leucine-rich repeat (LRR) resistance (R) protein. Ethylene (ET) is required for the resistance mediated by a subset of NB-LRR proteins an...
متن کاملTomato transgenic plants expressing hairpin construct of a nematode protease gene conferred enhanced resistance to root-knot nematodes
Root-knot nematodes (Meloidogyne incognita) cause substantial yield losses in vegetables worldwide, and are difficult to manage. Continuous withdrawal of environmentally-harmful nematicides from the global market warrants the need for novel nematode management strategies. Utility of host-delivered RNAi has been demonstrated in several plants (Arabidopsis, tobacco, and soybean) that exhibited re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005